Rare Charmless B Decays at CDF

Satyajit Behari (For the CDF Collab.) Johns Hopkins Univ., Baltimore

Contents

- **+** Introduction
- + Hadronic two track triggers at CDF Run2
- \oplus Branching fraction and direct A_{CP} in $B_u \to \phi$ K^{\pm}
- \oplus Observation and BR of B_s \rightarrow ϕ
- Summary

Introduction

- b-quark decays < 2% to charmless modes.
 - \rightarrow Rare: BR $< O(10^{-5})$
- ◆ b→sss transitions are penguin dominated
 - Useful to disentangle penguin contribution from other
 B-hadron decay
 - Particles in the loop can be replaced by their New
 - Physics counterparts!
 - Hints in sin2β of $B_d \rightarrow \phi K_s$ already?!

- Low longitudinal polarization than expected in $B_d \rightarrow \phi$ K*!
- Φ Measure various PV and VV modes and the A_{CP} involved
- Tevatron is a unique place to study the B_s decay modes and add to the present knowledge from B-factories.

Introduction continued...

 \oplus Tevatron is a rich source of all B-hadron species, B_d , B_u , B_c , B_s and Λ_b

$$\sigma_b = 29.4 \pm 0.6 \pm 6.2 \,\mu b \,(|\eta| < 1) \,(CDF)$$

- Currently operates at ~ 10³² cm⁻² sec⁻¹
- ◆ CDF Run 2 employs a new track-based hadronic trigger
 → More rare decay modes accessible
- Charmless b-decays at CDF w/ displaced tracks trigger

Direct ACP

Mixing & direct A_{CP} (BR measurement)

Direct only or mixing & direct

Direct A_{CP} [Talk by Andreas Warburton]

Search [Talk in the plenary session]

CDF Run 2 Displaced Track Trigger

 \oplus Level-1: 2 opposite charged tracks, $P_T \ge 2$ GeV/c Σ $|P_T| > 5.5$ GeV/c

 \oplus Level-2: Impact parameter, 120 μ m < d₀ < 1 mm Transverse decay length, L_{xy} > 200 μ m Azimuthal angle difference, 2° < $\Delta \phi$ < 90°

o signal from hadronic trigger

1000

800

SVT Impact Parameter distribution

33 mm beam ⊕ 35mm intrinsic

Triggers in use:

- ▶ Baseline trigger
- ▶ Low P_T : Drop opp. charge & $\Sigma |P_T|$ requirements prescaled, low purity, higher acceptance

- EW penguin contribution expected ~10%.
- Small direct A_{CP} expected
- Already established at B-factories
- Potential for New Physics

<u>Analysis strategy:</u>

- Use $B_{\perp} \rightarrow J/\Psi K^{\pm}$ as control sample.
 - Same event topology, from same trigger
 - Different angular distribution
- Construct a likelihood from kinematic variables and physical background templates derived from MC
- Do an unbinned max. likelihood fit to A_{CP} , signal yield and mass simultaneously
- Use PDG BR($B_u \rightarrow J/\Psi K^{\pm}$) to estimate BR($B_u \rightarrow \Phi K^{\pm}$)

B_u → φ K[±] Reconstruction *Continued...*

Optimized analysis cuts:

- \bot Lxy > 350mm, Vertex χ^2 < 8
- ♣ P_T^{soft} > 1.3 GeV/c
- $+ d_0(B) < 100 \text{ mm}$
- **↓** Isolation(R < 1.0) > 0.5
- ↓ 1 < M_{KK} < 1.06GeV/c2</p>
- ♣ 5 < M_{KKK} < 5.6 GeV/c2
 </p>
- ΔΜμμ < 100MeV/c2
 </p>

Unbinned max. likelihood fit inputs:

- 2-track invariant mass
- ♣ 3-track invariant mass
- Helicity angle (φ or J/Ψ polarization)
- Specific ionization in central tracking chamber (dE/dx)

Legends: Total PDF, signal, partially reconstructed decays, combinatorial bkg, physical bkg ($B \rightarrow f_0 K$, $B \rightarrow KKK$, $B \rightarrow K^{*0}\pi$, $B \rightarrow K\pi\pi$)

Isolation: $P_T(B)/[P_T(B)+\Sigma_{\Delta R<1}P_T(trk)]$ Helicity angle: cosine of angle between B^0 and one of the φ daughters in φ rest frame

$B_u \rightarrow \phi K^{\pm}$ Fit Results

Total PDF

SignalPartially recon.

decays

- comb. bkg

$B_u \rightarrow \phi K^{\pm} Signal$

- Signal
- Partially recon. decays
- comb. bkg
- $--B \rightarrow f^0K$
- ---- B → KKK
- $\longrightarrow B \rightarrow K^{*0}\pi$
- $\cdots B \rightarrow K\pi\pi$

B_u → ϕ K[±] Branching Ratio

- \oplus B₁₁ \rightarrow \Diamond K[±] Yield: 47.0 ± 8.4
- \oplus B_u \rightarrow J/ Ψ K[±] Yield: 439.0 ± 22.0
- Using PDG value: BR ($B_u \rightarrow J/\Psi K^{\pm}$) = (1.00 ± 0.04) × 10⁻³

- BR measured w.r.t control channel
 - → Most systematics cancel
- **Dominant** contribution from:
 - Particle dependent trig. Eff.: 7.2%

$$BR(B_u \rightarrow \phi K^{\pm}) = (7.2 \pm 1.3 \pm 0.7) \times 10^{-6}$$

$B_u \rightarrow \phi K^{\pm} A_{CP}$

Dominant systematics from:

- Detector charge asymmetry: 5%
- Fit templates & method: 2.5%

Fit Results:

$$A_{CP}(B_u \to \phi K^{\pm}): 0.046 \pm 0.050$$

$$A_{CP}(B_u \to J/\psi K^{\pm}): -0.07 \pm 0.17$$

$$A_{CP}$$
 (HFAG) = 0.03 ± 0.07

$$A_{CP} = \frac{\Gamma_{B^- \to \phi K^-} - \Gamma_{B^+ \to \phi K^+}}{\Gamma_{B^- \to \phi K^-} + \Gamma_{B^+ \to \phi K^+}} = -0.07 \pm 0.17^{+0.06}_{-0.05}$$

Bs $\rightarrow \phi \phi$ Search

- Never observed before
- \oplus Bs \rightarrow V V decay, not a CP eigenstate
- Angular analysis possible in future
- Φ No or very little direct A_{CP} expected in this channel by SM.
- ⊕ Gluonic penguin → Probe for New Physics

Analysis Strategy:

- + Use high statistics $B_d \rightarrow J/\Psi$ K* mode for acceptance corrections and cutoptimization
- ♣ Use B_s \rightarrow J/Ψ Φ as the normalization mode
- **Lut-based blinded analysis:** Optimize cuts on signal MC and data background
- Obtain signal distribution > Fit to extract the yields
- Do separate search in Baseline and Low P_T triggered samples
 → Merge results

Bs $\rightarrow \phi \phi$ Search

- Optimize cuts on MC sample
 - \blacksquare Projection of transverse decay length Lxy on the B_s P_T direction
 - + P_T(ϕ 1), P_T(ϕ 2), χ ²
 - \blacksquare pointing constraint $d_0(Bs)$
 - lacktriangle impact parameter of reconstructed lacktriangle

Maximize the significance variable:

$$\Sigma = \frac{S}{1.5 + \sqrt{B}}$$

- Optimization independent of MC sample size
- Optimized for 3σ significance.

Bs $\rightarrow \phi \phi$ Results

Optimized cuts:

- Φ d₀(B_s) < 80 μ m
- Φ P_t(Φ) > 2.5 GeV/c
- Φ L_{xy} > 350 μ m
- Φ $\chi^2_{xy} < 10$

Open the box!

Dominant source of systematics:

 Φ 36% from BR(Bs \rightarrow J/ Ψ Φ) [CDF Run 1]

Combined Baseline+LowPt Significance: 4.80

From MC

$$BR(B_{s} \to \varphi \varphi) = \frac{N(B_{s} \to \varphi \varphi)}{N(B_{s} \to \psi \varphi)^{corr}} \frac{\varepsilon(\psi \varphi)}{\varepsilon(\varphi \varphi)} \cdot \frac{BR(B_{s} \to \psi \varphi) \cdot BR(J/\psi \to \mu^{+}\mu^{-})}{BR(\varphi \to K^{+}K^{-})}$$

From PDG

BR = $(1.4 \pm 0.6 \pm 0.2 \pm 0.5 \text{ (BR)}) \times 10^{-5}$

Summary

⊕ CP Asymmetry in hadronic charmless decays measured at CDF, agreement

with HFAG, consistent with zero

- Φ New pure penguin decay mode observed for B_s , additional mode for $\Delta\Gamma_s$
- ◆Looking forward to higher luminosity for studying more b → sss decay modes